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Irreversible melting of poly(ethylene terephthalate) crystals on heating has been examined by temperature 
modulated differential scanning calorimetry (t.m.d.s.c.). The apparent heat capacity of complex quantity obtained 
by t.m.d.s.c, showed a strong dependence on frequency and heating rate during the melting process. In order to 
explain this behavior, a kinetic modelling of melting has been presented. The modelling considers the melting of 
an assembly of fractions having a continuous distribution of non-equilibrium melting points. Three cases of the 
superheating dependence of melting rate coefficient have been examined: constant rate coefficient, linear 
dependence and exponential dependence. The modelling predicts frequency response functions similar to Debye's 
type with a characteristic time dependent on heating rate. The response function successfully explains the 
dependence on frequency and heating rate of the apparent heat capacity obtained experimentally. The 
characteristic time of melting of crystallites has been evaluated as a fitting parameter of the response function, and 
the superheating dependence of melting rate coefficient has been distinguished by the heating rate dependence of 
the characteristic time. Taking account of the relatively insensitive nature of crystallization to temperature 
modulation, it is further suggested that the 'reversing' heat flow is related to the pure endothermic heat flow of 
melting and the 'non-reversing' heat flow corresponds to the exothermic heat flow of re-crystallization and re- 
organization when extrapolated to 60 ---* 0. The behavior of the apparent heat capacity will be an important 
characteristic feature of the melting kinetics, and hence the modelling will develop a new applicability of t.m.d.s.c. 
to the melting of polymer crystals. © 1998 Elsevier Science Ltd. All rights reserved. 

(Keywords: temperature m o d u l a t e d  d.s.c. ;  k ine t i cs  o f  me l t i ng ;  p o l y m e r  c rys t a l s )  

INTRODUCTION 

Temperature modulated differential scanning calorimetry 
(t.m.d.s.c.) 1-6 is a new technique applying a sinusoidal 
temperature modulation on a linear heating/cooling of  
conventional d.s.c, and analyzes the relationship between 
the modulation components of  sample temperature, Ts, and 
of  heat flow, Q, expressed as, 

Ts = ]'s + ]'s ei(wt+e) (1) 

Q_ = O + Oe i(°" + ~) (2) 

From the amplitude and phase of  the modulation compo- 
nents, we can define an apparent heat capacity of  complex 
quantity, ACe-i% whose magnitude and phase are defined as 
follows 7-9, 

o~]'s (3) 

c¢ = (e -- 5) -- (e -- (5) 0 (4) 

where (e - ~)0 represents the baseline of  the phase lag. 
Figure 1 shows a typical example of  the change in the 

magnitude and phase obtained by a heating and cooling run 

* To w h o m  cor respondence  should be  addressed 

of amorphous poly(ethylene terephthalate) (PET). Corre- 
sponding to the change in the total heat flow which is 
equivalent to the heat flow of  conventional d.s.c., the 
changes are clearly seen for the glass transition, cold 
crystallization and melting in the heating run and the 
ordinary crystallization in the subsequent cooling run. The 
changes both in the magnitude and phase become quite large 
for the melting process, while the apparent heat capacity is 
relatively insensitive to the crystallization process. 

For an irreversible kinetics of  exo- or endothermic 
process such as crystallization or melting under supercooled 
or superheated condition, we have recently proposed the 
following expression for the apparent heat capacity given by 
the contribution of  true heat capacity and of  the kinetic 
response 7-9, 

A~Ce - ic t  = mCp + i 1F x' (5) 
60 

Here, mCp is given by the specific heat, Cp, multiplied by the 
sample weight, m, and F 'T represents the temperature deri- 
vative of  the irreversible exo- or endothermic heat flow. As 
well as the magnitude of  the apparent heat capacity, AC, we 
consider the change in the phase angle, ct, which has been 
overlooked in the conventional analysis of  t.m.d.s.c. 

In a series of  our experimental works 7-1°, we have 
applied the model to the crystallization process of  polymers. 
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Figure I T.m.d.s.c. of heating (thick line) and cooling (thin line) r_uns of 
amorphous PET of 9.44 mg at 3.0 K reinU: (a) total heat flow 0, (b) 
magnitude of the apparent heat capacity z~C and (c) the phase lag (e - 8). 
The modulation period was 28 s 
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Figure 2 Plots of the 'reversing' heat flow -~z~C(w) for different 
modulation periods (thin lines, 36, 44, 56, 68, 84 and 100 s) along with the 
total heat flow Q (thick line) during the melting process of PET crystals. 
The heating rate was 3.0 K min ~. The heat flow was normalized by the 
total heat flow of molten PET at 280°C. The sample weight was 2.47 mg 

the underlying heat flow of transformation, 
[~: Q = - ~mcp + ~'. Therefore, if the 'reversing' heat 
flow is only of the contribution of the true heat capacity, 
mc~,, the relationship between the 'reversing' heat flow and 
the total heat flow means that the melting process is 
exothermic, namely P > 0, which cannot be the case. The 
anomalous behavior of the 'reversing' heat flow must be due 
to the contribution of melting kinetics in the apparent heat 
capacity, which will be the main subject of the present 
paper. 

In the following, we firstly examine the melting behavior 
of PET crystals, especially frequency and heating rate 
dependence of the apparent heat capacity during the melting 
process. Secondly, we discuss possible modelling of the 
melting kinetics and present a new analysis method of the 
melting process by t.m.d.s.c. 

We have examined the crystallization of polyethylene v'") 
and PET s.9 under quasi-isothermal (constant 7",) and non- 
isothermal (7"~ = I t )  conditions. The frequency dependence 
of ACe -'~ was well approximated by the following 
expression, 

ACe m = A + i  B (6) 
CO 

where A and B are real quantities independent of o~. Utilizing 
the simple frequency dependence, the model proved its use- 
fulness especially in the determination of the temperature 
dependence of crystal growth rate 7- m. 

In the present paper, we examine the irreversible melting 
of polymer crystals on a heating run, 7"~ = fit. Melting 
process is also of interest in the applicability of t.m.d.s.c., 
because the apparent heat capacity is quite sensitive to the 
melting process, as typically seen in Figure 1 for PET and 

11 
reported by Saruyama for polyethylene. Hence, the 
information is expected to be valuable for further under- 
standing of the melting process. However, the melting of 
polymer crystals is far more complicated than crystal- 
lization because of the fast kinetics, co-existence of re- 
crystallization and re-organization, and the wide distribu- 
tion of the non-equilibrium melting points j~. It is also 
known that, in the melting peak, the 'reversing' heat flow 
calculated from the magnitude of the apparent heat capa_city, 
- 13~C(w), becomes larger than the total heat flow, Q, as 
shown in Figure 2. Here, the total heat flow comprises 
the contribution of the true heat capacity, -t3mcp, and 

EXPERIMENTAL RESULTS 

Lq)erimental 

The d.s.c. 2920 Module controlled with Thermal Analyst 
2200 (TA Instruments) and equipped with a TA RMX 
Utility was used for all measurements. Nitrogen gas with a 
flow rate of 40 ml rain -] was purged through the cell. The 
phase, e and 6, were calculated from the raw data of sample 
temperature and of heat flow. A modulation period of 24-  
100 s was examined with the modulation amplitude adjusted 
for the condition of heating only, 

d~ 5)" 

In the figures, the data points are plotted at the interval of the 
applied modulation period. 

The d.s.c, run of the present experiment consists of cyclic 
heating and cooling runs of a sample with different 
modulation periods at each heating rate. The cooling runs 
were at the rate of 10 K min ~ from the melt kept at 285°C, 
and the heating runs were from 100°C at the rate in the range 
of 0.7-4.5 K min -~. In the data analysis of t.m.d.s.c., the 
apparent heat capacity was calibrated for different modula- 
tion periods, and the change in the calibration constants with 
temperature was also taken into account. The apparent heat 
capacity was then normalized by the value of molten PET at 
280°C. The baseline of the phase lag, (e - 6)0, was 
determined by a straight line between the phase lags at 
150°C and at the end of melting (--280°C). The choice of 
the baseline will not be crucial because the melting peaks in 
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Figure 3 Raw data for t.m.d.s.c, showing the frequency dependence of  
the melting process of  PET crystals of 2.78 mg by heating runs at 
1.4 K min-I:  (a) endothermic heat flow F obtained by a conventional 
baseline subtraction withouLthe 'reversing' heat flow, (b) the magnitude of 
the apparent heat capacity AC after the correction for different modulation 
periods and (c) phase lag (~ - (5). The symbols represent the following 
modulation periods: 28 ( I ) ,  44 (A), 56 ([3), 68 (V) and 84 s (~). In (c), the 
dotted lines represent the baselines (~ - i% determined by the straight lines 
between the data points at 150 and 280°C 

the phase lag were large enough, as shown in Figure 3c. The 
baseline of the endothermic heat flow was not corrected for 
the subtraction of the contribution of heat capacity (the 
'reversing' heat flow), because of the reason mentioned in 
the Introduction. 

Sample was an amorphous poly(ethylene terephthalate) 
film supplied by Toyobo. The sample weight was in the 
range of 2 -14  mg, and there was no qualitative difference 
by weight; the following data are mainly of 2.7-2.9 mg. 

Frequency and heating rate dependence of the apparent 
heat capacity 

Figures 3 and 4 show the endothermic heat flow and the 
apparent heat capacity on heating at the rate of 1.4 K min -1 
for different periods of modulation. From Figure 3a, we can 
confirm that the endothermic heat flow was not affected by 
the change of modulation period. On the other hand, both of 
real and imaginary parts of the apparent heat capacity 
showed a strong frequency dependence in Figure 4a, b, 
where the real and imaginary parts are defined as, 

A~'Ce -i(~ = ArC' -- iA~C" (7) 

This behavior of frequency dependence contrasts with the 
case of crystallization in which the real part was almost 
independent of frequency (equation (6)). 
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Figure 4 Frequency dependence of (a) the real part AC' and (b) the 
imaginary part AC" of the apparent heat capacity obtained by the data 
shown in Figure 3. The symbols represent the following modulation 
periods: 28 ( I ) ,  44 (A), 56 ([3), 68 (V) and 84 s (<>). The value of the 
apparent heat capacity was normalized by that of molten PET at 280°C 

Figure 5 shows the frequency dependence of the apparent 
heat capacity obtained for several different heating rates at 
the same temperature of 257.0°C; the real and imaginary 
parts are plotted against modulation period. It is clearly seen 
from Figure 5 that the behavior in the frequency 
dependence has a strong dependence on heating rate. 

Non-linearity 
Figure 6 shows the ratio of the amplitude of the first and 

second harmonics of the response in heat flow and that of 
sample temperature during the melting of PET crystals. It is 
seen that the ratio of heat flow is comparatively large (ca. 
several %), while a small ratio of temperature guarantees 
sinusoidal temperature control. The higher harmonics of 
heat flow indicate a non-linear response of melting kinetics 
to temperature modulation, as discussed below. 

KINETIC MODELLING OF THE MELTING PROCESS 

In the theoretical part, we firstly review our model applied to 
polymer crystallization which did not show the frequency 
response of F '  T. Secondly, we summarize the characteristics 
of the melting of polymer crystals in order to formulate the 
modelling. The effect of re-crystallization and re-organiza- 
tion is also discussed. Subsequently, we present a kinetic 
modelling of the melting of polymer crystals and calculate 
the frequency response of the endothermic heat flow of 
melting to temperature modulation. The model successfully 
explains the experimental results as the response in melting 
kinetics, and provides quite valuable information about re- 
crystallization and re-organization, utilizing the insensitive 
nature of the apparent heat capacity to those processes. 

A basic model without frequency response in F'T 
If we take the exotherm as a positive heat flow, the 

heat flow, Q, to and from the sample can be represented 
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Figure 5 Plots of the real (O) and imaginary (~)  parts of the (normalized) 
apparent heat capacity during the melting process of PET against 
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Figure 6 Plots of the ratio of the amplitude of the lirst and second 
harmonics of the response in heat flow, FflF~, and that of sample 
temperature, T21TI, during the melting of PET crystals. The heating rate 
was 3.0 K min i. The modulation period was 28 s. The sample weight was 
2.36 mg 

as follows, 

dT, 
Q = - mcp ~ -  + F(t) (8) 

In the equation, - mcpdTfldt is the contribution of heat 
capacity of sample and the second term F(t) represents 
exo- or endothermic heat flow. With the heat capacity of 
mop in equation (8), heat flow appears only for a temperature 
change, dT~/dt; the response in heat flow changes its sign 

against increasing and decreasing temperature, and hence 
the process is reversible. On the other hand, the rate of 
transformation is not a function of dTfldt but of T~ (in 
other words, the degree of superheating or supercooling), 
as far as the system is supercooled or superheated. Hence, 
the exo- or endothermic heat flow due to a transformation is 
not reversible against small temperature change, but con- 
tinues the transformation. Instead of the change in the sign 
of heat flow, temperature change causes a modulation of the 
rate of transformation. Since the transformation rate is a 
function of T~, the exo- or endothermic heat flow will 
have the following expansion about sample temperature 
for a small modulation, 

F(t,T~)=P(t,T~)+FT'(t,T~)7"~e iI~'+~) (9) 

where F'T represents the temperature derivative of the exo- 
or endothermic heat flow. It should be mentioned that the 
possibility of the linear expansion was originally pointed out 
by Reading and coworkers j-3 and also discussed by 
Schawe . However, each term of the expansion has not 
been explained from the view point of the mechanism of 
phase transition. 

By applying a sinusoidal modulation to sample tempera- 
ture, the modulation components of Q, T, and F appearing 
in equation (8) must be in valance, as follows, 

0e'('°' ~ 6) = -mcpdtT~ei~t+~)+FT'T~e ~I~'+~) (10) 

~ C e  ic~ ~tt~sei{Wt + ~) i 

where ~Ce ~'~ defines the apparent heat capacity of the 
complex quantity expressed in equations (3)-(5). For a 
sinusoidal modulation, 

d - i(~t + e) ~T~e 

and 

~.sfi{~t + c) 

are at right angles each other, and hence F'  T is multiplied by 
i/o~ when translated to the value as an apparent heat capacity 
in equation (5). The term (i/w)F'T is responsible for the 
change in the phase lag of the apparent heat capacity 
during transformations such as crystallization and melting. 
Concerning the crystallization of polymers (polyethylene 
and PET), the frequency dependence of the apparent heat 
capacity was well approximated by equation (6). The depen- 
dence confirms the expression of equation (5) with mc~, and 
F' T being independent of modulation frequency. 

In the apparent heat capacity of ACe-'~ given by equation 
(5), the true heat capacity, mcp, can undergo a relaxation 
process such as glass transition, which gives rise to a 
negative imaginary part of mc r as a consequence of 

6 r irreversibility . The coefficient, F T, can also be of 
complex quantity, depending on the frequency response in 
the transformation kinetics to temperature modulation. 

Melting of polymer crystals 
Before proceeding to the modelling of melting kinetics, 

we shall summarize the characteristics of the melting of 
polymer crystals ~2. 

(1) Polymer crystals are quasi-stable having a continuous 
distribution of non-equilibrium melting points 
determined mainly by the distributions of lamellar 
thickness and of molecular weight. The wide 
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distribution of melting temperatures is responsible for 
the broad endothermic peak in the melting of polymer 
crystals, e.g. Figure 1. Successive melting of the crys- 
tallites is therefore expected for a heating run. 

(2) Melting is a fast process completed under low superheat- 
ing, in contrast with crystallization which usually 
requires high supercooling (ca. > 10°C). For a limited 
fraction of crystallites having melting points slightly 
lower than sample temperature, it is probable to expect 
the completion of melting in a time interval comparable 
to the modulation period (20-100 s). Hence, we can 
expect a frequency response of the kinetics. 

(3) In principle, we can think of reversible and irreversible 
melting of polymer crystals. Irreversible melting is 
expected for a non-isothermal heating run (dTs/dt > 
0); we are concemed with the irreversible process in 
the present paper. On the other hand, reversible process 
of melting (and crystallization) is also possible if we 
apply a modulation around a constant temperature 
(quasi isothermal mode of constant 7"s) in the melting 
range 13'14. In the irreversible melting on a run of heating 
only (dTJdt > 0), the response to a temperature mod- 
ulation only concerns the melting kinetics of super- 
heated crystallites. On the other hand, during the 
process of reversible melting (and crystallization), we 
have to consider the response of melting above the 
melting point and the response of crystallization 
below the melting point when a temperature modulation 
is applied around the melting point of a crystallite. It is 
known that the temperature (superheating or super- 
cooling) dependences of those processes are strongly 
asymmetric 12 and the reported modulation of heat 
flow is actually deformed from a sinusoidal shape in 
its profile 14. Besides the asymmetry in the melting 
and crystallization, it is further reported that, on 
quasi-isothermal measurements, the apparent heat capa- 
city increases due to a (symmetric) response of rever- 
sing melting and crystallization on still existing 

13 14 crystals ' . Considering the complexity of the melting 
phenomena observed by the quasi-isothermal measure- 
ments, we expect that the irreversible melting on a run 
of heating only will be more straightforward. 

Re-crystallization and re-organization 
We have to consider the contribution of re-crystallization 

and re-organization because the temperature range of non- 
equilibrium melting is well below the equilibrium melting 
temperature. 

Firstly, we should make a comment on an additive nature 
of crystallization and melting in the apparent heat capacity. 
It is apparent that the exothermic heat flow of re-crystal- 
lization and re-organization is subtractive from the 
endothermic heat flow of melting. On the other hand, the 
effect in the apparent heat capacity of equation (5) is 
determined by the sign of the temperature derivative, F'  T, 
defined in equation (9). If it is ordinary crystallization or 
melting, the derivative takes a negative value indicating a 
decrease in exotherm or an increase in endotherm against a 
rise in temperature. Therefore, the contribution to the 
apparent capacity of re-crystallization and re-organization 
makes an additive effect to that of melting. 

We may be able to estimate the contribution experimen- 
tally, comparing the change in the apparent heat capacity 
during the melting and ordinary crystallization processes. 
For PET shown in Figure 1, the change in the apparent heat 

G 
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id 
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Figure 7 Schematic plots of Gibbs free energy of liquid and crystal in 
equilibrium (thick lines) and of quasi-stable crystals, a, b and c, (thin lines) 
against temperature. Process 1 represents the melting of fraction a having 
Tm< Ts and Processes 2 and 3 represent re-crystallization to the fraction b 
and re-organization to the fraction e, respectively; both of the fractions b 
and c are of Tm> Ts 

capacity is negligibly small during crystallization compared 
to the melting peak, mainly because of the smaller 
magnitude of the temperature derivative, F'T, of crystal- 
lization in equation (5). The temperature dependence of the 
rate of re-crystallization and re-organization will be similar 
to that of crystallization, or may be even weaker, because of 
the existence of still surviving crystals which will serve as 
the substrate of re-crystallization and re-organization. 
Therefore, we can reasonably neglect the contribution of 
re-crystallization and re-organization to the change in the 
apparent heat capacity in the following calculation con- 
cemed with melting. 

Owing to re-crystallization and re-organization, we also 
have to consider the change in the distribution of fractions 
having different melting temperatures. Figure 7 shows 
melting, re-crystallization and re-organization on the plots 
of Gibbs free energy against temperature. Re-crystallization 
produces a crystal having Tm > Ts from the melt (Process 2) 
and increases the fractions of T m > T s. Re-organization 
(Process 3) will also modify the distribution of the fractions 
having Tm > Ts. It is obvious from Figure 7 that even 
though the processes influence the distribution of Tm > Ts, 
the distribution of a superheated fraction having Tm < Ts 
will not be affected by those processes. Therefore, melting 
kinetics considered below is not influenced by those 
processes, though the initial amount of the fraction before 
melting increases with the processes. 

Frequency response in the melting kinetics concerned with 
EfT 

We define the fraction of the crystallites having the 
melting temperature in the range from Tm to Tm -k- dTm, as 
~b(t, Tm) d T  m. The total crystallinity is then expressed by the 
fractions as, 

cb(t)= ~o dTm~b(t , Tm) (l l) 

We consider irreversible melting on heating and assume that 
the melting rate coefficient, R, of a fraction, ~b(t, Tm), is a 
function of superheating, AT ~ Ts - Tm, expressed as, 

0 for AT < 0 (12) 

R =  R(AT) A T > 0  

Utilizing equation (12), the change in the fraction, ~b(t, Tm), 
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is described by the following differential equation, 

d0(t, Tin) 
- -  RO(t, Tin) (13) 

dt 

For superheating only (dTJdt  > 0), the solution of equation 
(13) is simply given as, 

J' 
0(t, 1~) = 4)(0, 7;.) expl - R dt'] (14) 

1) 

As mentioned above, the contribution of re-crystallization 
and re-organization is not considered in the calculation. 

We consider a sinusoidal modulation of temperature 
expressed in equation (1) with a linear heating, 7", =/3t. If 

" i o ) l  0 we define 13to + T~e =- T m, the superheating, AT, is given 
as a function of to and At -= t - to( > 0), as follows. 

AT(At, t o ) = 1 3 A t + T S ~ ; ( ' ( e  i~a ; -  1) (15) 

Then, the response in the melting rate coefficient to the 
small temperature modulation is expanded as, 

R(AT) = R(/3At) + R'(/3At)Tse i~;" (e i~ax' l ( 1 6) 

1 ,, - iwt iwAt + ~R (/3At)[T~e "(e - I)] 2 + . . .  

where R' and R" represent the first and second derivatives of 
R in terms of AT. The crystallinity of each fraction, 0(At > 
0, to), given by equation (14) is then approximated, as 
follows, 

j'~; dxR({3x) { - i~,,, 
0(At, t(1) = Oo e o 1 - T~e 

- A t  

j dxR'(/3x)(e i~°x- I ) +  ...} (17) 
(1 

The endothermic heat flow of melting, Fme,(t), is given by 
the time derivative of the degree of the total crystallinity, ¢,, 
multiplied by the enthalpy difference of the system, AH( > 
0). In order to calculate the steady response in heat flow, we 
suppose a hypothetical situation of uniform distribution of 
the fractions at the initial state, 0(0,TIn) = 00, and the same 
form of R(AT) for the fractions. For the uniform distribution 
of the initial fractions, the steady response to a sinusoidal 
modulation of temperature should be represented by a Four- 
ier series expressed as, 

dff - 
Fmelt(t ) = A H  d t  = Fmelt + FT'(C°)~'sei°a' + " "  (18) 

It can be shown that the assumption is justified R)r the actual 
variation in 0(0, Tin) being negligible in a temperature range 
larger than /3 × (Modulation Period) and 27r/3r, where r 
represents a characteristic time for the melting of crystal- 
lites, as introduced below. The conditions require a quasi- 
steady state of the melting process within the temperature 
ranges. 

Concerning the requirement of  the quasi-steady state of 
the melting kinetics, the irreversible melting (or irreversible 
processes in general) needs to be differentiated from the 
reversible processes of modulation in the case of heat 
capacity measurement or of the reversible melting and 
crystallization. For the measurement of  heat capacity on 
heating or cooling, it has been pointed out that the 
application of MDSC requires the change in the system 
fast enough to follow the temperature change of the heating 
or cooling run 17. It means that the modulation should be 
around an equilibrium state in the case of heat capacity 

measurement. For the reversible melting and crystallization, 
it has also been pointed out that the steady response of the 
cycles of  melting and crystallization must be attained by a 
modulation around a constant temperature 13"14. On the other 
hand, we are concerned with the irreversible melting on 
heating, namely an irreversible transformation process. The 
process cannot be in the steady state in the long run, and 
hence we must consider whether the process can be 
approximated as a quasi-steady state or not. In the present 
case of the successive melting of crystallites, the steady 
state is attained only when the distribution of the melting 
point is uniform. For the actual distribution of the melting 
points, the above-mentioned conditions give the criterion 
for the justification of the quasi-steady state approximation. 

From equations (16) and (17), it is obvious that the 
response in the melting kinetics is essentially non-linear and 
the Fourier series of  FmeJt(t) in equation (18) should have the 
higher harmonics. This argument is supported by the 
experimental evidence of the non-linearity discussed in 
the section Exper imenta l  Results'. In the following, we are 
only concerned with the term of the linear response which is 
related to the apparent heat capacity. The behavior of the 
higher harmonics will be the subject of  further study. 

In equation (18), the underlying endothermic heat flow of 
melting./~'melt,  is given by a constant heating rate, i"~ =/3t. If 
we define/3t0 --= Tm, the crystallinity of  each fraction, 0(t, 
Tin), becomes a function of (t - to). For t /r  >> 1 under steady 
state. /e,,,e~t is then represented as follows, 

f ~ / 3  dto fTmelt = AH - to) _ Aft/00/3 (19) 
dO(/  

o dt 

On the other hand, the coefficient of the first harmonic, 
F',r(c0)T,, in equation (18) is given by a Fourier integral of 
b',,,~it(t) as, 

dt e -'~°;Fmek(t ) 
FT (w)T~ = Fred t 

~ d t  Fmelt(t ) 

=0°/3 J ~- 7~dte i~'Fme,t(t ) (20) 

Using equation (11), the Fourier integral of Fmdt(t) = 
AH(dcb/dt) is calculated as, 

iwt dte icot dte Fmelt(t ) = ioaAH dTmO(t , Tin) 

~g:  

= i~AH dto(/3 + iwT~e i'°;(')e i";', 
o 

f d(At)e /~°a'0(At, to) (21) 

In order to obtain the linear response, FT'(C0)T~, to the sinu- 
soidal temperature modulation under steady state, it is only 
required to select the terms including T~ in the expression of 
equation (21). Then, taking account of 0(At < 0, to) = 00, 

f" e i~°X dx = ~rS(~o) + ~ 
o 

and 

.•3C o 0o/3 dt° = 1, 
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the linear response can be calculated. Hereafter, we utilize 
the following expression of the contribution of the melting 
kinetics to the apparent heat capacity, 

A~Ce - iot = mcp + f (6o) (22) 

,f(6o) ---- f'(6o) - if"(6o) = -l Fr'(6o ) (23) 
6o 

The contribution, fl6o), is then expressed as follows, for 
R ' ¢ 0 ,  

f(ro):2u~/~b°~ ~2 dxe-i~xe-I:'dyRO3y, I~ dyei~yR'([3Y)(24, 

and for a constant melting rate coefficient of Ro (R'o = R"o = 
. . . .  0), 

M-/% 
fo(6o) = - -  (25) 

1 + i6oro 

re -~ l/Re (26) 

It is noted that the constant melting rate coefficient means a 
stepwise change of the rate at AT = 0 and corresponds to 
R'(AT) = R0&(AT) in equation (24). 

For the constant melting rate coefficient,f0(6o) of equation 
(25) corresponds to the frequency response function of 
Debye's type with the characteristic time of r0 = I/R. In this 
case, the melting process of a fraction is simply expressed as 
4KAt) = ~b0 exp(--RAt) from equation (14) and is actually 
characterized by the time, r0. The characteristic time, r0, is a 
constant and does not show the heating rate dependence of 
the apparent heat capacity shown in Figure 5. If the melting 
rate coefficient shows a superheating dependence, we 
expect the dependence on heating rate of the characteristic 
time related to the melting kinetics of a fraction. In the 
following, we consider two different dependences of 
melting rate coefficient on superheating, R1 = a A T  and 

caT 
R 2 = (a /c) (e  -- 1), and calculate the contribution off(6o). 

The case  o f  R 1 = a A T. We assume that the melting rate 
coefficient follows the simplest dependence on superheat- 
ing, namely a linear dependence represented as R~ = aAT 
for AT > 0. Then, the contribution of the melting kinetics, 
fl(6o), is represented as, 

e7 dx_/T._e 
6O7" 1 

(27) 

T 1 ~ (28) 

In Figure 8, the real and imaginary parts offl(6o) are plotted 
along with the frequency response function of Debye's type, 
1/(1 + i6or). Those figures suggest that fl(6o) expressed in 
equation (27) is similar in its behavior to the frequency 
response function of Debye's type. As we had expected, the 
superheating dependence of the melting rate coefficient gives 
rise to the heating rate dependence of the characteristic time: 
T 1  o c  ~ - ] / 2 .  

We can understand the limiting behaviors offl(6o) shown 
in Figure 8, if we consider the melting of a fraction, ~(t, Tm) 
dT, (Figure Oh, c) on a heating run shown in Figure 9a. In 
Figure Oh, c, we plotted two limiting cases of (i) and (iii) as 
well as the intermediate one, (ii). Here, the limiting cases 
axe determined by the value of rl  ---- 1/(2aft) m which 
characterizes the melting process of a fraction expressed 
as (~(At) = (~0 exp( -- (Ad2r0 2) from equation (14). For 
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Figure 8 Plots o f f  l(c0) and f 'l(w) of equation (27) (thick lines). The 
dotted lines represent the plots of frequency response function of Debye's 
type for the same characteristic time. In (a) and (b), they are plotted against 
log(or) and the Cole-Cole plot is shown in (c) 

C0rl << 1 represented by (i) in Figure 9b, c, the fraction 
completes melting in a time interval much smaller than the 
modulation period. To sustain the steady response of 
melting endotherm, we need a continuous distribution of 
the melting points. In a time interval of dt, fractions of 
d~o(dT/dt)dt complete melting. Therefore, the response 
becomes proportional to the change in temperature, dT/dt, 
and hence the contribution to the apparent heat capacity, 
fl(6o), becomes a real quantity (the phase angle ot ~ 0) for 
the limiting case of 6oft << 1 (A in Figure 8c). For 60rl >> 1 
represented by (iii) in Figure 9b, c, on the other hand, the 
change in ~b(t, Tin) during the modulation period becomes 
negligible, and we can expect the change in the melting rate 
coefficient as the response to temperature modulation. The 
change follows sample temperature, Ts, and hence fl(6o) 
becomes an imaginary value (o~ ---, 7r/2) while the magnitude, 
Ifl(ro)l, becomes smaller for larger c0rl (B in Figure 8c). 

The case  o f  R 2 = a/c(e car - 1). Assuming an exponen- 
tial dependence of R 2 = (a/c)(e car - 1), the contribution of 
the melting kinetics, f2(6o), is represented as, 

, ,  e /2(6o) - 1 + 6 o r ~  r3 

exp[ 1 (29) 
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Figure 9 Plots of AT(t), O(t) and -O(t)  of equations (13)-(15) /or a 
fraction having AT = 0 at t = 0. The values of the following parameters are 
fixed at T~ = _+ 0.2 K, period = 40 s and/3 = 3 K min -1. For (i)-(i i i) ,  a = 
1000, 1 and 0.003 K -1 min -L  which corresponds to wrl  = 0.122, 3.8 and 
70.2, respectively. In (c), the magnitude of - 4 )  for (i), (ii) and (iii) was 
multiplied by 1.3, 50 and 3 × 103, respectively. The melting rate 
coefficient, - (~, without the modulation is also shown in (c) by dotted lines 

1 
r~ -= - -  (30) 

tic 

C 
r 3 ~ - (31) 

a 

The numerical calculation of equation (29) shows that the 
frequency dependence off2(w) is similar to that of  Debye ' s  
type (Figure 10). Corresponding to the two extreme cases of 
r21r3 >> 1 and << 1,f2(oo) is approximated by f l (w)  for r2/ 
r 3 > > i ,  

with 

] ~ ( w ) - - ~ ( w )  (32) 

( T2T3) 112 
r ] = k  2 / 

and by Debye ' s  type for r2/r3 << 1, 

M44,o 
f2 (w)  ~ - -  (33) 

1 + io~r2 

As mentioned above, the frequency dependence of,fl(o~) 
is similar to that of  Debye ' s  type. In order to differentiate 
the two extreme cases, we will need to examine the depen; 

1/ dence on heating rate of  the characteristic time: r~ /3- ~ 
and r2 ~ fl-1. 
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Figure l0 Numerical calculations of the real and imaginary parts off2(w) 
of equation (29) (thick lines) for rz/r3 = 100/10 (a), 30/30 (b) and 10/500 s/ 
s (c). The dotted and broken lines represent equations (27) and (33), 
respectively 

The different behaviors off2(w) for the two extreme cases 
can be understood, if  we consider what determines the 
melting kinetics of  a fraction. In the case of  rz >> r3, namely 
(a/c) >> 13c, the melting rate coefficient is approximated by 
the linear dependence of  R ] discussed above, and hence r] 

1/2 = 1/(2a/3) characterizes the kinetics. On the other hand, 
for r ,  << r3, the melting kinetics is determined by the 
exponential increase in the melting rate coefficient, R 2(At) 
exp(/3cAt), which is characterized by re ---- 1/(13c). Therefore, 
depending on the ratio of  re / r> the characteristic time 
shows a cross-over change from r~ to r2 corresponding to 
the change from linear to exponential dependence on 
superheating of the melting rate coefficient. 

Heat flow of melting and of re-crystallization and re- 
organization 

The present model  only concerns the melting process, and 
hence the underlying endothermic heat flow, Fmelt ,  repre- 
sents pure endothermic heat flow of melting. The heat flow, 
Free,, is given by the response in heat flow of  melting to 
linear heating and is related to the apparent heat capacity 
which is determined by the response to a sinusoidal 
temperature modulation. Actually,  it can be shown from 
equations (24) and (25) that f(0) = ka-&b0 and the following 
relationship holds, 

Fmelt = - - / 3 f (O )  (34 )  
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Figure 11 Plots of endothermic heat flow divided by heating rate,/7/3, 
during the melting process of PET crystals for different heating rates of (a) 
0.7, (b) 2.0 and (c) 4.5 K min-1. Temperature modulation was not applied 

This relationship will be obvious, if we consider the discus- 
sion related to F i g u r e  9. 

Concerning the apparent heat capacity during the process 
of melting, we have reasonably assumed that the response in 
the melting kinetics is solely responsible for the change in 
the apparent heat capacity which is supposed to be 
insensitive to re-crystallization and re-organization. I f i t  is 
the case, so-called 'reversing' heat flow of - f l A C  is 

expressed as, 

- -  ~ A C ( w )  = - -  ~ [mCp  + f ( o ~ ) ]  (35 )  

For oJ ---* 0, the 'reversing' heat flow has a limit of, 

- (3AC(O) = - (3mcp + Fmelt (36) 

which comprises the contribution of specific heat and the 
pure endothermic heat flow of melting. Actually, in 
F i g u r e  2, the 'reversing' heat flow seems to have a limit 
for longer modulation periods. 

On the other hand, the total heat flow, Q, of  t.m.d.s.c, is 
equivalent to the heat flow of  a conventional d.s.c, and 
comprises the contribution of  specific heat, the endothermic 
heat flow of  melting and the exothermic heat flow of  re- 
crystallization and re-organization, Fexo( > 0), as expressed 
in the following, 

(2 = -/3mcp +/~mel t  + Fexo (37) 

N 

= - f ~ a c ( o )  + Fexo 

From the relationship, it can be said that the absolute value 
of the total heat flow must be smaller than that of the 'rever- 
sing' heat flow extrapolated to 60 ---* 0; namely 

E 
t -  

O 

-i"- 

0 

- I  

-2 

I I I 

(a) ..'" \ =- 

." 

_ .........o"""""~ 
• - "  I I 

- 1 0  0 10 

time in rain 

~E -s (b) 
t,- 

o 
n-, - I 0  

I 
-15 

I 

I 
20  

- 240  

220 

200 

I 

0 

I 

--4 
3 
¢D 

e -  

c~ 

4 I I 

-~ 3 
.¢_ 

>~ 

m 2 

LU 

1 

I I 
2 0 0  zZO 2 4 0  z 6 0  

T e m p e r a t u r e  in °C 

F i g u r e  12 Plots of (a) heat flow (solid line) and sample temperature (dotted line) against run time for a standard d.s.c, without modulation. The sample 
temperature was raised to 250.0°C at 3.0 K min -1 and then kept at that temperature isothermally. In (b) and (c), heat flow and its integration (enthalpy) are 
shown for heating runs at 3.0 K min 1 interrupted by the isothermal annealing at 250.0°C for (0) 0, (1), 5, (2) 50 and (3) 500 min. In (c), the line (4) represents 
the change in enthalpy for a cooling run at 3.0 K min -1 preceding the heating runs. The sample weight was 17.17 mg 

POLYMER Volume 39 Number 21 1998 5101 



Melting of polymer crystals observed by temperature modulated DSC: A. Toda et al. 

0.6 _--'l 

~ 0.4 

0.2 

0.0 

0.6 

~ 0.4 

v 

0.2 

0.0 

( a )  

L_ _______L_J_ 
I I -  

k~ ~ ~'-~ tx*~'~x"~ 

"K 

I I 
0.0 0.5 .0 

(z~C' - m cp) I (AH %) 

Figure 13 Cole-Cole plot of the real and imaginary parts of the apparent 
heat capacity such as shown in Figure 5 taken at 240.0 and 257.0°C for 
different heating rates. The symbols represent the following heating rates: 
0.7 (O,O), 1.0 (A,A), 1.4 (U,~), 2.0 (T,V), 3.0 ( • ,~) and 4.5 K min 1 ( × 
, + ). The filled and open symbols correspond to the data at 240.0 and 
257.0°C, respectively. With the adjustable parameters of cp, ~ o and ~-~ or r~, 
the data points were fitted to the solid line representing equation (27) in (a) 
and to the broken line of equation (33) in (b) 

IQI _< IflA~C(0)I. This will be the reason for the anomalous 
relationship between the 'reversing' heat flow and the total 
heat flow shown in Figure 2. 

As a consequence of the argument, it is further expected 
t_hat the co r r e spond i ng  'non-reversing' heat flow, 
Q - [ - f l A C ( 0 ) ] ,  is given by the pure exothermic heat 
flow of re-crystallization and re-organization, F~x,. 
Therefore, by examining the behavior of the 'reversing" 
and 'non-reversing' heat flows, t.m.d.s.c, enables us to 
elucidate the endothermic heat flow of melting and the 
exothermic heat flow of re-crystallization and re-organiza- 
tion, while the total heat flow only gives the sum. It should 
be mentioned that, since both of the 'reversing' and the 
'non-reversing' heat flows are due to the response in 
irreversible transformations such as melting, re-crystal- 
lization and re-organization, the terminology will be 
misleading for the transformation processes. 

Application of the model to the melting ~[" PET crystals 
For the melting of PET crystals, we expect a considerable 

amount of exothermic heat flow of re-crystallization and re- 
12 organization . Actually, Figure 11 shows that the melting 

peak shifts to higher temperature for slower heating rate 
because of re-crystallization and/or re-organization. 
Figure 12 also shows the direct evidence of re-crystal- 
lization and/or re-organization in the temperature range of 
the melting peak. For those reasons, the endotherm does not 
correspond to the pure endothermic heat flow of melting, 
Free h = -  ~AH4)0,  and hence 00 becomes an adjustable 
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Figure 14 Logarithmic plots of the characteristic time r chosen for the 
fining such as shown in Figure 5 against (a) heating rate fl and (b) 
temperature. In (a), the symbols represent the values determined for the 
temperatures of 240°C (©,O) and 257°C ([~,11), and in (b) the values were 
lbr the heating rate of 1.4 (0 ,0)  K min i. The open and filled symbols 
correspond to the fitting to equations (27) and (33) of the apparent heat 
capacity, respectively. The slopes of the solid and broken lines in (a) are 
-I.0 and - 0.5, respectively 

parameter of the fitting to the frequency response functions 
of equations (25), (27) and (33). 

In Figure 5, the frequency dependence of the real and 
imaginary parts of the apparent heat capacity has been fitted 
to equations (22) and (27) or equation (33) with the 
adjustable parameters of c/,, 4)0 and ~l or r=. Figure 13a, b 
shows the fitting to equations (27) and (33), respectively, in 
Cole-Cole plots for several different heating rates at 240.0 
and 257.0°C. These figures indicate that the frequency 
dependence can be fitted to both equations (27) and (33) by 
choosing appropriate values for the parameters. In order to 
distinguish the difference, we need to examine the 
dependence on heating rate of the characteristic time; the 
change in the characteristic time for different heating rates is 
clearly seen from the shift of the data points for the same 
range of modulation periods of 28-100 s. 

The characteristic time determined by the fitting of the 
data is plotted in Figure 14a against heating rate at three 
different temperatures. At higher temperatures around the 
melting peak, the dependence can be fitted to T ~ /3 -t 
(exponential dependence on superheating of the melting rate 
coefficient), while at lower temperatures to z ~ fl-t/2 (linear 
dependence). Since the exponential dependence on super- 
heating should also be approximated by a linear dependence 
for superheating low enough, the exponential dependence at 
higher temperatures means that higher superheating is 
required for the complete melting at higher temperatures. 
Actually, in the plot against temperature shown in 
Figure 14b, it is seen that the characteristic time becomes 
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Figure 15 Lissajous diagrams of the modulation component of heat flow during the melting peak plotted against that of sample temperature. The two cycles 
of the modulation are plotted. The heating rate and the modulation period of t.m.d.s.c, are the following: (a) 0.7 K min -1 and 32 s, (b) 0.7 K min -~ and 100 s, 
(c) 4.5 K min -1 and 32 s and (d) 4.5 K min -1 and 52 s 

longer for higher temperatures. We expect the melting of 
original crystals at lower temperatures and that of re- 
crystallized or re-organized ones at higher temperatures, and 
hence the present result indicates slower melting of the re- 
crystallized or re-organized crystals at low superheating. 

Here, we consider the conditions of quasi-steady state 
required for the application of the present model. For the 
present experiments, the temperature ranges of /3 x 
(Modulation Period) and 2rr/3r are from 0.28 K (Period = 
24s, /3 = 0.7 K s  -]) to 7 .5K (Period = 100s, /3 = 
4.5 K s  -] ) and from 1.2K (r = 17s at 240°C, (3 = 
0.7 K s  -1) to 4.5 K (r = 43 s at 262°C, /3 = 1.0 Ks - l ) ,  
respectively. The change in the apparent heat capacity 
shown in Figure 4 is expected to be negligible in the 
temperature range. The first condition can be judged by 
plotting a Lissajous diagram of the modulated heat flow 
against the modulated sample temperature, as shown in 
Figure 15 where the two cycles of the data during the 
melting peak are plotted. Considering the divergence from a 
closed loop in Figure 15d, the maximum range of 7.5 K 
required for the fastest heating rate seems to exceed the 
limit, and it may be the reason for the deviation of the data 
points in Figure 5 from the fitting curves for faster heating 
rates and longer modulation periods. The limit of the 
applicability may also explain the negative AC" for the 
fastest heating rate shown in Figure 13. Because of the limit 
of the applicability, we have to use shorter modulation 
periods and resort to the extrapolation to ~ --* 0 when we 
discuss the limiting behavior of the 'reversing' and'non- 
reversing' heat flow. 

Figure 16 shows the plots of the 'reversing' heat flow 
extrapolated to ~ ~ 0, namely - ~(mCp q-- ~r-/q~0), and the 
corresponding 'non-reversing' heat flow, using the values of 
cp and ~b0 determined by the fittings at each temperature. It is 
noted that, if the variation in ~b(0, Tm) is small enough, the 
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F i g u r e  16 Plots of the total heat flow ~ (thick line), the 'reversing' heat 
flow extrapolated to 60 --* 0, -~[mCp + zMr"/q~0], ( 0 , 0 )  and the 
corresponding 'non-reversing' heat flow (A,&) for the heating rate of 
1.4 K min-1. The values of cp and ~b0 for the open and filled symbols were 
determined by the fitting to equations (27) and (33) of the apparent heat 
capacity, respectively. The heat flow was normalized by the total heat flow 
of molten PET at 280°C. The sample weight was 2.78 mg 

change in q~(0, Tm) with temperature is not contradictory to 
the assumption of a uniform distribution of the melting point 
of fractions. In Figure 16, pure endothermic heat flow of 
melting appears as the extrapolated 'reversing' heat flow, 
and pure exothermic heat flow of re-crystallization and re- 
organization as the corresponding 'non-reversing' heat 
flow. As mentioned in the section Heat flow of melting 
and of re-crystallization and re-organization, the 
extrapolated 'reversing' heat flow is actually similar in its 
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shape and magnitude to the limiting profile of the 
'reversing' heat flow for longer modulation periods shown 
in Figure 2. Re-crystallization and re-organization at lower 
temperatures is clearly seen in this plot, while in the total 
heat flow the endothermic heat flow of melting 
cancels out the exothermic heat flow of re-crystallization 
and re-organization in the temperature range. 

DISCUSSION AND CONCLUSION 

We have examined the irreversible melting of polymer 
crystals, utilizing the apparent heat capacity of complex 
quantity obtained by t.m.d.s.c. The melting of PET crystals 
showed a strong dependence on frequency and heating rate 
of the apparent heat capacity. We have argued that the 
frequency dependence should be explained as a frequency 
response in the melting kinetics concerned with F'T. 

In order to clarify the physical meaning of the frequency 
response in the apparent heat capacity, we have presented a 
detailed modelling of the melting kinetics of polymer 
crystals having a continuous distribution of the melting 
points. The frequency response in the melting kinetics to 
sinusoidal temperature modulation has been examined for a 
constant melting rate coefficient, a linear dependence on 
superheating of the melting rate coefficient and an 
exponential dependence. The modelling produces the 
frequency dependence similar in its behavior to that of 
Debye's type and introduces a characteristic time dependent 
on heating rate, /3. The dependence on heating rate of the 
characteristic time is expressed as r ~/3~ where - 1 -< x -~ 
0. Experimentally, the exponent of the heating rate 
dependence was within a range from - 1/2 to - 1, and 
depends on temperature. 

Concerning the effect of re-crystallization and re- 
organization during the melting process, it is reasonably 
assumed that the apparent heat capacity is insensitive to 
those processes compared to melting. Utilizing the differ- 
ence in sensitivity, we are able to separate the endothermic 
heat flow of melting from the exothermic heat flow of re- 
crystallization and re-organization. Using the conventional 
terminology of t.m.d.s.c., it means that the peak in the 
'reversing' heat flow extrapolated to co ---, 0 gives the pure 
endothermic heat flow of melting and the corresponding 
'non-reversing' heat flow represents the exothermic heat 
flow of re-crystallization and re-organization. 

Compared to the process of crystallization, it has been 
quite difficult to examine the melting behavior of polymer 
crystals because of the non-equilibrium nature of melting, 
such as the wide distribution of melting temperature and the 

occurrence of re-crystallization and re-organization. There- 
fore, the details of the melting kinetics, e.g. superheating 
dependence of the melting rate coefficient, have not been 
the subject of d.s.c., microscopy or other conventional 
methods. An exceptional case was the melting of extended 
chain crystals of polyethylene having a well defined melting 
point~: the examined melting rate coefficient showed a 
non-linear dependence on superheating. T.m.d.s.c. enables 
us to study the melting kinetics under more common 
conditions and will be a quite useful tool for the 
investigation of melting process. 
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